An application of a new planar positron imaging system (PPIS) in a small animal: MPTP-induced parkinsonism in mouse.

نویسندگان

  • Hiroyuki Takamatsu
  • Takeharu Kakiuchi
  • Akihiro Noda
  • Hiroshi Uchida
  • Shingo Nishiyama
  • Rikiya Ichise
  • Akinori Iwashita
  • Kayoko Mihara
  • Shunji Yamazaki
  • Nobuya Matsuoka
  • Hideo Tsukada
  • Shintaro Nishimura
چکیده

OBJECTIVE Recent animal PET research has led to the development of PET scanners for small animals. A planar positron imaging system (PPIS) was newly developed to study physiological function in small animals and plants in recent years. To examine the usefulness of PPIS for functional study in small animals, we examined dopaminergic images of mouse striata in MPTP-induced parkinsonism. METHODS Male C57BL/6NCrj mice were treated with MPTP 7 days before the PPIS study. Scans were performed to measure dopamine D1 receptor binding and dopamine transporter availability with [11C]SCH23390 (about 2 MBq) and [11C]beta-CFT (about 2 MBq), respectively. After the PPIS study, dopamine content in the striatum was measured by HPLC. RESULTS The MPTP treatment significantly reduced dopamine content in the striatum 7 days after treatment. In the MPTP-treated group, [11C]beta-CFT binding in the striatum was significantly decreased compared with the control group, while striatal [11C]SCH23390 binding was not affected. Dopamine content in the striatum was significantly correlated with the striatal binding of [11C]beta-CFT. CONCLUSION The present results suggest that PPIS is able to determine brain function in a small animal. Using PPIS, high throughput imaging of small animal brain functions could be achieved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Imaging of Clot by 99mTc-HMPAO Labeled Platelet in Animal Model Induced Thrombosis

99mTc-HMPAO labeled platelet (LP) imaging may integrate thrombosis imaging into routine clinical procedures. In the current study, we assessed the feasibility of the use of 99mTc-HMPAO LP for imaging of small clots in an animal model. Thrombosis was induced by application of FeCl3 solution in the distal part of the inferior vena cava (IVC) of a 6100 g anesthetiz...

متن کامل

Imaging of Clot by 99mTc-HMPAO Labeled Platelet in Animal Model Induced Thrombosis

99mTc-HMPAO labeled platelet (LP) imaging may integrate thrombosis imaging into routine clinical procedures. In the current study, we assessed the feasibility of the use of 99mTc-HMPAO LP for imaging of small clots in an animal model. Thrombosis was induced by application of FeCl3 solution in the distal part of the inferior vena cava (IVC) of a 6100 g anesthetiz...

متن کامل

Optimization of an ultra-high-resolution rectangular pixelated parallel-hole collimator with a CZT pixelated semiconductor detector for HiRe-SPECT system

Introduction: In nuclear medicine, the use of a pixelated semiconductor detector such as CZT is an of growing interest for introducing new devices. Especially, the spatial resolution can be improved by using a pixelated parallel-hole collimator with equal holes and pixel sizes based on the pixelated detector. The purpose of this study was to compare the effect of pixelated and ...

متن کامل

Quantitative analysis of the therapeutic effect of magnolol on MPTP-induced mouse model of Parkinson’s disease using in vivo 18F-9-fluoropropyl-(+)-dihydrotetrabenazine PET imaging

18F-9-Fluoropropyl-(+)-dihydrotetrabenazine [18F-FP-(+)-DTBZ] positron emission tomography (PET) has been shown to detect dopaminergic neuron loss associated with Parkinson's disease (PD) in human and neurotoxin-induced animal models. A polyphenol compound, magnolol, was recently proposed as having a potentially restorative effect in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)- or 6-hyd...

متن کامل

PET Imaging a MPTP-Induced Mouse Model of Parkinson’s Disease Using the Fluoropropyl-Dihydrotetrabenazine Analog [18F]-DTBZ (AV-133)

Parkinson's disease (PD) is characterized by the loss of dopamine-producing neurons in the nigrostriatal system. Numerous researchers in the past have attempted to track the progression of dopaminergic depletion in PD. We applied a quantitative non-invasive PET imaging technique to follow this degeneration process in an MPTP-induced mouse model of PD. The VMAT2 ligand (18)F-DTBZ (AV-133) was us...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Annals of nuclear medicine

دوره 18 5  شماره 

صفحات  -

تاریخ انتشار 2004